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ACOUSTIC-PHONETIC RECOGNITION OF CONTINUOUS SPEECH 
BY ARTIFICIAL NEURAL NETWORKS 

Kjell Elenius and Gyorgy Takdcs* 

Abstract 

This paper describes an artificial neural network that recognizes phonemes 
in continuous speech, based on error back-propagation training. The 
recognition is performed by two connected nets. First, a coarse feature 
network is trained to recognize seven quasi-phonetic features from 10 ms 
spectral frames of a Bark-scaled filter bank having 16 filters in the range 200 
to 5000 Hz. The features need not be binary but may take any values 
between 0 and 1 .  The feature net is shown to be relatively insensitive to 
changing the spcaker or even the language. The outputs of the feature net as 
well as the spectral outputs of the filter bank are used as input to the second 
net, the phone net, which recognizes phonemes. A seven frames wide sym- 
metric window of the feature net output is used to include the context of the 
frame being classified. Some provision is taken to make this information 
resistant to changes in speed of articulation by adding hidden nodes that 
have some extent of overlap in their input from the feature net. The outputs 
of the phone are also used as inputs to a segmentation network. Fifty 
sentences of one speaker were used for training the different nets, and ten 
more were used for testing. The features of the coarse net were recognized 
with 80% lo 95% accuracy. Correct phones were recognized with 64% accu- 
racy and in 82% of the cases, the correct phone was among the best three 
candidates. The segmentation net was compared to a human segmentation, 
and 82% of the segments were placed at the correct segment or at a displace- 
ment of +/- 10 ms; 18% of the segments were deleted and 54% were 
inserted. 

INTRODUCTION 
This paper reports on experiments concerning phoneme recognition in continuous speech. A 
recognition system has been developed and evaluated while one of the authors was on a seven 
month visit as a guest researcher at the Department of Speech Communication and Music 
Acoustics. 

Speech recognition based on phoneme like units is a long-term research objective. It is 
attractive since it is inherently free from vocabulary limitations. This is of special importance 
in highly inflected languages, e.g., Hungarian. Dozens of different forms of the same root 
word may occur making speech recognition based on word size units encounter severe practi- 
cal limitations. 

The system reported in this paper mixes some well established techniques with some new, 
recently published elements from the area of neural networks to a novel combination in order 
to optimize a speaker dependent phoneme recognition system. 

It is generally accepted that speech recognition cannot be solved purely on the acoustic- 
phonetic level. There is, however, no reason to transfer acoustically-phonetically solvable 
tasks to higher processing levels. A main objective of this project is to recognize phoneme 

* Guest researcher from the Hungarian Post Office, Research Institution, Budapest, from October 1989 to April 
1990. Names in alphabetic order. 
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like elements on this bottom level as well as is possible. The recognition system includes both 
automatic segmentation and automatic classification of speech. 

The output of the acoustic-phonetic level of the system is a string of phoneme candidates. 
Each phonetic event is related to one or several candidates in parallel. The data format may 
be extended by including information on durations and probabilities of the phonetic candi- 
dates if necessary. The output has no rigid sequential structure why simultaneous and over- 
lapping events in the speech production process easily can be described. 

Usually the first step in the acoustic processing of speech is a spectral analysis using 10 - 
20 ms time frames. A considerable part of the phonemes have an inherently transient charac- 

ter making their recognition on the basis of single frames very uncertain. In spite of this a 
very innovative neural network based strategy has offered good recognition results based on 
this description (Kohonen, 1988). However, most systems use longer windows for phoneme 
recognition. A window having a duration of several speech frames slides across the prepro- 
cessed speech material in single frame steps. The minimal number of frames in the window is 
determined by the slowest phoneme transition. Transitions to phoneme targets are known to 
carry essential information as well as transitions from the targets. Thus the neighbourhood 
has two sides: the preceding and the succeeding. This supports the use of a symmetrical win- 
dow to handle coarticulation effects of neighbouring phonemes. 

The most traditional solution to windowing is using a section of a spectrogram-like repre- 
sentation (Waibel, Hanazawa, Hinton, Shikano & Lang, 1989). This representation has a high 
redundancy. Since automatic speech recognition sooner or later seems to be limited by the 
amount of data or the speed of computation, data compression has a value in its own. A 
widely used compression method is the description of speech frames by cepstral coefficient 
vectors instead of spectral vectors (Krause & Hackbarth, 1989; Elenius & Blomberg, 1982). 
This method yields a compression rate of approximately 2. In our system a completely differ- 
ent method has been introduced, partly for the purpose of data compression. It represents each 
10 ms frame by some basic articulation related features that are calculated from the speech 
spectrum. These "coarse phonetic features" describe the manner and the place of articulation. 
Another purpose of this feature representation is to divide the phoneme classification task into 
two subtasks, which are managed separately. In the final phoneme classification of a single 
speech frame the values of these features within a 15 frame symmetrical window are used 
together with the spectral vector of the current, central, frame. Using this representation the 
compression rate is approximately 5 when compared to the spectrographic representation 
above. 

The recognition of phoneme-like units is traditionally done in two sequential steps: seg- 
mentation and classification. However, an exact segmentation frequently needs information 
available only after the classification. Many of the papers reporting excellent recognition per- 
formance only deal with manually segmented speech samples. Thus a very problematic part 
of the processing is not included. Komori et al. have made experiments with automatic seg- 
mentation and they report 9.2 % errors on segmentation (Komori, Hatazaki; Tanaka, Kawa- 
bata & Shikano, 1989). We have tried to build a system that does not depend on manual seg- 
mentation during the recognition phase. 

The system has a hierarchical structure and the underlying idea is to separate the system 
into a language independent and a language dependent part. This will facilitate the adaptation 
to a new language. The phoneme recognition system is based on two hierarchically connected 
but separately trained neural networks. It builds on well functioning elements of the most fre- 
quently used neural net structures. We may to some extent leave it to the network to learn 
details that we have problems in modelling explicitly. Still, we need a vast amount of general 
ideas, theoretical knowledge and experimental results to be able to construct good network 
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structures and training procedures. The structure of a neural network can be used as a carrier 
of our background knowledge. Some important aspects are: 

- what is the task of the neural network and how is it evaluated? 
- how well is the speech represented by the input data? 
- how does the network structure match the task? 
- which kind of training material is used and how is it utilized to train the network? 
- how can a complete task be divided into subtasks for the independent training of sub- 

nets? 
The principles and basics of neural networks are not discussed in this paper. This informa- 

tion can be found in, e.g., Rumelhart & McClelland (1986), McClelland & Rumelhart (1988), 
Kohonen (1984), Kohonen (1988), Lippmann (1987), Lippmann (1988), Mariani (1989), 
Niles (1989), Treleaven (1989). 

1. FEATURES OF THE PROCESSED SPEECH MATERIALS 
The first experiments were conducted using a Swedish speech database. Later, a Hungarian 
database was created and processed. Most tests were made by the recognition system adapted 
to a single speaker but the performance of the system to other speakers than those used for 
training were tested as well. Three different speech materials were used in the experiments. 

Number of phonemes (columns) Average length in ms ( X ) 

140 

120 

100 

80 

60 

40 

20 

0 

A:Y:O:A:U.O:E:A:STOU I: S A A  F O  I A M N E  P Y  N B K  L T  J V H R G D  k t p 
J J G 

Fig. I .  Phoneme distribution in the Swedish INTRED-material (columns). The average length of 
phonemes is denoted by X-s .  Phonemes are sorted by this length. Technical phonetic 
alphabet defined in Table IV. The dot-symbol (".") to the far left indicates pauses. 

Sixty Swedish sentences constitute the first speech material. They are part of a speech 
material that has been used in several other studies and will be referred to as the INTRED- 
material (Hunnicutt, 1987; Nord, 1988). The material consists of 150 sentences read in a nat- 
ural way by a trained male speaker having a central Swedish dialect. The reading speed was 
rather fast, 13.1 phonemes/s. The speech signal is sampled at 16 kHz using a 6.3 kHz low- 
pass filter. The sentences are labelled by a human phonetic expert using both visual and audi- 
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tory information (Nord, 1988). Fig. 1 shows the natural and uneven distribution of phonemes 
in this material. Multiplying a phoneme's frequency by its average length gives a measure of 
the total time conveyed by the phoneme, which is related to the amount of training samples 
available for the phoneme, when training an artificial neural network by (a subset of) this 
material. 

Table I shows some sentences of the INTRED-material in ordinary Swedish orthography 
together with a phonetic transcription using a technical phonetic alphabet defined in Table 
IV. The labelling is basically phonemic and does not show allophonic variations, unless they 
obviously are the result of some higher level rules, e.g., retroflex variants of the consonants n ,  
d and 1 and the Swedish vowels a and o have special labels. These variants have not been 
regarded as separate units in our experiments, i.e., we only used one d-phoneme. 

The second speech material consists of 10 similar Swedish sentences pronounced by 
another male speaker. This material will be referred to as the JONSSON-material. 

The third speech material was created especially for these recognition experiments. A 
native Hungarian male speaker read the text in a natural way. The average speed was 12.6 
phonemesls. This material was recorded and analyzed using the same technique as described 
for the INTRED-material, and will be referred to as the MAMO-material. In these experi- 
ments, the Hungarian phonemes were represented by a set of 49 elements. The details can be 
found in Section 3. The labelling was done on phonetic criteria rather than phonemic, since 
the analysis of recognition errors in the Swedish material indicated that the phonemic 
labelling was the origin of some errors. Table I1 contains some sentences of the MAMO-text 
in Hungarian orthography and also in a Hungarian technical phonetic alphabet. 

Table I. The first 8 sentences of the INTRED-material using two different notations. 

Text using Swedish orthography 

PA utflykten grillade bamen glatt korvcn dc SAtt 
med hemifrAn. 

Slutligen lagade manncn omsorgsfullt bilcn som 
hade gAtt sonder. 

Det ar som att satta vagnen framfor hhsten. 

Vid kontrollen stangdc poliscn snabbt av gatan 
med hjalp av stangsel. 

En svala g6r ingcn sommar. 
Det k svArt att hitta vagncn dar han sittcr. 

Efter lunchen lagade snickama omsorgsfullt 
golvet i det gamla huset. 

Var sak har tvA sidor. 

Text using a technical phonetic alphabet 

~~ 'A:+"u:T~#FL'YK~T~EN GRnIL'ADE 
B1A:2NEN GL'ATt KkORVEN DIE+ F'AT~+ 
M'EH"EMI#FR'A:N. 
SLWU:TtL'IEN LVA:G'ADE M'ANNEN 
~MSARS#F'ULT~ B'I:LEN st&+ 
"AD'E+G',&T~S'ONDA~R. 
DIE+ E+ St&+ 'A+ S ~ A T ~ ~ A  V'AGNEN 
FR'AM#FOR+ H'AST~EN. 
VtI:+ K~ANT~R~ALEN ST~"&VGD'E 
P~AL*I:SEN S N ' A P ~ T ~  'A:V G"A:T~'AN ME+ 
J ' A L P ~  'A:v+ ST~IANGSEL. 
'EN SV"A:L9A J ' O ~ R +  "ING1EN+ S ~ M ' A R .  
DIE+ 'E+ SFtA:2Tt 'A+ H"ITttA V'ANGEN 
D ' A ~ R +  'AN+ S ' I T ~ A ~ R .  
'EFTtE+ L'UNSJEN L"A:GIADE 
SN"IKktA2NA "AMSARS#F'ULT~ G I ~ V E T ~  
'I:+DIE+ GUAML'A+ H1U:SETt. 
VIA: 2StA:Kk HtA:+ 2TtF'A: S"I:DIER. 
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2. THE BASIC STRUCTURE OF THE COMPLETE SYSTEM 
In this section, we will give an overview of the proposed system. Details regarding functions 
and designs will be discussed in Section 3. Continuously spoken sentences constitute the input 
to the system. The output of the acoustic-phonetic processing is a string of phoneme candi- 
dates and may be used as input to a language processing stage. The output of a complete sys- 
tem would be ordinary, written text. The connections between the basic units and the different 
representations used are shown in Fig. 2. 

T ~ m e  wave 

AZ0MTSZA:N 
OVO :NKJ?EM 
LNLB.tAL 

az utcan 

Continuous speech recognition system 

Fig. 2. The basic structure of the recognition system and the different representations used. The 
input is the speech wave form (representation I ) .  The output of the acoustic-phonetic unit 
is a string of phoneme candidates (representation 2). For each segment, the probability 
of the phoneme candidates is indicated by the character size, large for the first candi- 
dates and smaller for the second and third candidates. This level does not indicate any 
word boundaries. The output of the language unit is ordinary, written text. The language 
processing unit is not included in this study. 
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The acoustic processing does not make use of any higher level information. All the pro- 
cessing related to syntax and semantics (e.g., lexicon, grammar) is included in the second box 
in Fig. 2. This paper only deals with the acoustic-phonetic processing in the first box. It  con- 
sists of 8 basic units as depicted in Fig 3. 

Fig. 3. The elements of the acoustic-phonetic recognition unit. The representations at different 
points of the system are shown in Fig. 4 and Fig. 5. 

- - - - - - , , . . , . , .  , . . . 
: 1 :  : 2 :  : 3 :  : 7 :  
~, . , . , \ ,  

: 4 :  . . : 5 :  
- I  - . , 

- ,  . - I -  - 8  - - , -  - , -  

The input to the system is the speech wave form, see number 1 in Fig. 4, where the hori- 
zontal axis of each representation has the same time scale and the vertical lines indicate the 
manually marked phoneme boundaries. The smoothed output signal of the filter bank is con- 
nected to the inputs of the feature classification neural network, and the sampling interval is 
10 ms. Compare representation 2 in Fig. 4, where each column describes one filter frame with 
16 filter outputs. Low-frequency filters are at the bottom, and the size of each square is pro- 
portional to the filter output magnitude in dB. The filter cut-off frequencies are listed in 
Table I11 below. 

The output of the feature net is a seveu element vector describing manner and place of 
articulation, (compare Fig. 6 below). This output is shown by representation 3 in Fig. 4, 
where the sizes of the squares are proportional to the output activity of the feature net. The 
order of the features is the same as in Fig. 6, with the uppermost feature corresponding to 
feature number 1, voiceness. 

The more detailed, phone classification neural net has a dual input window, which includes 
the spectral vector describing the actual moment of the speech and the output of the coarse 
feature net describing the speech context by seven frames centred at the spectral frame, see 
Fig. 5. The dual window slides past the speech material in a frame-by-frame fashion and the 
weighting of the inputs is automatically fornled during the training of the phone network. 

segm. 1 
neural a~ 

net .  " 
Kl 

F - 
F. 2 0 

-0 4 

- 
1 segm. 

coarse dual fine , window 
neural + window* neural r data 

net. data  net.  selector 
D I? B 

: filter 
bank 

I A 
elector - , . e 

: 6 :  2 - - 
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a, 
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o a r :  
a 
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Ideally, only the output node of the phone net associated with the actually processed phone 
should have a high activation, while all the others should remain at the base level. An exam- 
ple of a real output of the net is shown by representation 4 in Fig. 4. The sizes of the rec tan- 
gles are proportional to the output activations of the phone network. It may be seen that only 
a few output nodes have high activation simultaneously. The most active node indicates the 
first phoneme candidate of the network, the next one corresponds to the second candidate and 
so forth. 

Automatic segmentation of speech is performed by a segmentation network. The activation 
levels of only the first candidates of the phone net are used as input and the input is taken 
over a 15 frame wide window (150 ms). The single output of the network is expected to be 
zero except for an activation peak at the very first frame of each phoneme only (compare 
Fig. 12 below). An example is shown in Fig. 4, representation 5. Phoneme labels for the 
detected segments are based upon an evaluation of the smoothed output activations of the 
phone net. This completes the transition from time the time domain into the event domain, 
and the output can be seen at the bottom of Fig. 4. 

Only the units D and H in Fig. 3 contain language specific elements. In the units E and G, 
the size of the data memory needed depends on the size of phoneme set, but the function and 
the other parameters are independent of language. Changing language requires a reshaping of 
the network structure of unit D to the new phoneme set and retraining the unit with a new 
speech material. The phoneme table in unit H needs to be altered as well. 

Fig. 5.  The dual input window of the phone network. It includes one section of the filter bank 
output and the coarse phonetic feature parameters in seven frames. 
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3. STRUCTURE, PRINCIPLES AND LEARNING OF DIFFERENT NETWORK ELEMENTS 

3.1 Filter bank 
The filter bank simulation program is based on an FFT-procedure (Blomberg, 1989) using a 
Hamming window. The FFT calculates 1024 spectrum lines, and their energy is merged 
within the filter bands. The mel-scaled filter cutoff frequencies are listed in Table 111. 

Table 111. Characteristic frequencies of the filter bank 

3.2 The coarse feature classification neural network 
This processing unit has multiple tasks. The most important one is to transfer spectral ampli- 
tudes into phonetically related features describing manner and place of articulation. A key- 
problem is to select an appropriate set of coarse features. In spite of the existence of some dif- 
ferent phonetic feature sets (Jacobson, Fant, Halle, 1963; Chomsky & Halle, 1968; Fant, 
1973; Singh, 1976), a new feature set was constructed according to the following principles: 

- the feature parameters should be detectable within a single spectral frame 
- the feature set should be language and speaker independent 
- the feature set should describe the manner and place of articulation 
- the feature set should be usable for different phonetic classes 
- the feature target values should be readable from an existing speech data base 
- the total number of features should be small 
- the features should conform to traditional phonetic feature sets in the steady state phase 

of the phonemes 
- the feature set may be non-distinctive for phonemes, i.e., some phonemes may be iden- 

tical in all features. 

Filter number 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

A fundamental problem is that the classical phonetic features are interpreted only at the 
phoneme level and we need a description for 10 ms frames. This means that direct use of 
features is difficult, but there are still good reasons to use something related to them. At a 
phoneme border, two adjacent spectral frames may be very similar although they are labelled 
as different phonemes having different phonetic features. From an acoustical point of view, 

Low frequency cutoff (Hz) 
188 
294 
406 
5 27 
66 1 
809 
977 

1167 
1384 
1633 
1920 
225 1 
2634 
3077 
3592 
4190 

High frequency cutoff (Hz) 
294 
406 
5 27 
661 
809 
977 

1167 
1384 
1633 
1920 
225 1 
2634 
3077 
3592 
4190 
4884 
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the difference may often be larger between the central frame and the boundary frames of a 
phoneme than between two adjacent frames on opposite sides of a phoneme boundary. The 
feature set is intended to capture some of these intra-phoneme variations, but the labels o f  
speech data does not contain this information explicitly. However, the learning capacity of a 
neural network can be used for this purpose. The target values of the features are binary in the 
training phase, but by exposing the net to thousands of speech frames having varying acoustic 
representations for the same feature, we expect continuous feature values to develop that will 
convey also subtle details about each feature. This especially holds for the place of articula- 
tion related features. 

As a result of a compromise among the principles listed above, a seven-element feature set 
was constructed based on manner and place of articulation related features. The manner 
related features are: voiceness, noiseness, nasalness and vowelness while the place related 
features are: frontness, centralness and backness, since these three can easily be assigned to 
both vowels and consonants. Since we expect the features to take continuous values, we use 
the suffix "-ness" in analogy with the term loudness for perceived sound level. Vowels have 
three features set positive: voiceness, vowelness and one place related feature. Consonants are 
described by one place feature and the relevant manner features (vowelness is of course set to 
minus). Tables IV and V show feature target values for Swedish and Hungarian phonemes, 
respectively. The features are not completely independent, and the targets are not able to dis- 
criminate between all the phonemes. However, this set is intended as a practical compromise. 
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Table IV. Course phonetic features for the Swedish phoneme set. 
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Table V.  Coarse phonetic featuresfor the Hungarian phoneme set 

13 
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A multi-layer perceptron net was trained using error back-propagation to recognize the 
coarse phonetic features from the spectral outputs of the filter bank. The network structure 
can be seen in Fig. 6. The net has 36 nodes (13 in the hidden layer) and 299 connections. 

- 

V) 
V) 

V ) m m  vl 
m m m E g E m  
w a; 0 - 
r2 w g a -  a, A 2 
0 
.3 .- m g 2 o g  
0 0 rd c c b o n  3 

1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6  

filter out.puts 

Fig. 6. The structure ofthe coarse feature network. 

The filter amplitudes were scaled in the interval 0.0 - 1.0 to unify them with the dynamic 
range of the system. The feature target values were set to 0.1 or 0.9 for the plus and minus 
values in Tables IV and V, since this resulted in better convergence for the training than using 
0.0 and 1.0 as targets. The sizes of the pattern files used are summarized in Table VI. 
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Tuhle VI. Volume dutcl for the ci~ffercnt speech materials used. 

Speech 
material 
(sentences) 

INTRED 
1-50 
INTRED 
5 1-60 
JONSSON 
1 - 10 
MAMO 
1-50 
MAMO 
5 1-60 

Fig. 7. The total error as a function of the number of epoches during the training of the coarse 
feature network. The fluctuations are caused by periodically changing the training 
material between five different training partitions. One epoch in this figure means one 
prcscntation of all the patterns in one partition only and the error is also related to one 
partition at a time. 
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The fastest learning without getting disturbing oscillations in the output error was achieved 
when using a learning rate of 0.001 and a momentum term of 0.9. The input frames were cho- 
sen at random and the weights were updated after each presentation. The recognition results 
for the test set stabilized after a couple of thousand epoches. The total error as a function of 
the number of epoches is shown in Fig. 7. The training material was subdivided into five 
partitions that each could fit into the working memory of the computer. This speeded up the 
training by substantially reducing disk accesses. Each training fragment was used for a period 
of fifty epoches after which it was substituted by the next one. The fluctuation in the total 
error in Fig. 7 is due to this. One epoch normally means one presentation of each pattern i n  
the training set, but since the training material was divided into five partitions one epoch in 
this Figure only means that one fifth of the training patterns has been presented to the net. 

3.3 The phone network 
The phone network receives two types of input using a dual window (see Fig. 5). They are 
different both in content and in function. The first input is a seven frame window covering 
the coarse phonetic features. It contains some redundant information, since during steady 
states adjacent speech frames have similar feature values. Data compression can also be made 
by reducing the number of features. It is reasonable to compress these data before the final 
phoneme decision in order to reduce the network complexity and to decrease the number of 
weights to be trained. The compression is combined with a sort of time warping function to 
compensate for tempo changes in phoneme pronunciations. Both the compression and the 
time compensation function are realized by a hidden layer with a special connection structure, 
as discussed below. The second input to the phone net is the filter bank spectrum of the frame 
being processed, and the net should mix the two kinds of input data appropriately. 

The number of output nodes in the network (the size of the phoneme set) is also the result 
of a compromise. The result can be seen in Table IV for the Swedish material and in Table V 
for the Hungarian material. A particular feature of both sets is to treat the occlusion and burst 
phase of stops and affricates as two different segments, where both segments have a specific 
label. Both phoneme sets have a special class for silent intervals marked by ".". These seg- 
ments occur mostly at the end of the sentences. The vowels are represented by short and long 
pairs. The "v" symbol marks the neutral vowel. 

According to the discussed requirements, the phone network consists of four layers: one 
input layer, one compression hidden layer, one "mixing" hidden layer, and one output layer. 
The network topology can be seen in Fig. 8. As a result of separating the compression and 
mixing functions, the connection structure is quite complex. Each column of four nodes in the 
compression layer is connected to a group of three successive columns (frames) of the seven 
feature nodes, which are the output of the coarse feature net. There is a one frame overlap in 
the coarse feature columns connected to the compression node columns. This means that all 
three compression columns will cover seven coarse feature columns. The rationale for this is 
that this will make them more insensitive to tempo changes in the speech. 
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Fig. 8. The structure of the phone classification network. The Swedish network has 20 nodes in 
the mixing layer and 40 output nodes. The Hungarian network has 25 and 49 nodes, re- 
spectively. 

. . . . . .  

feature & spectral 

The number of output nodes is determined by the phoneme inventory of the language 
being processed. The Swedish phone network has 40 output nodes and the Hungarian has 49. 
The number of nodes in the mixing layer is proportional to the size of the phoneme set. The 
mixing layer of the Swedish network has 20 nodes, the Hungarian 25. There are no differ- 
ences in the lower level layers of the phone networks. The Swedish net has a total of 137 
nodes and 1612 connections and the Hungarian has 151 nodes and 2177 connections. Fig. 8 
shows only the first four and the last four nodes of the mixing and output layers. Some char- 
acteristics of the data files used for training and testing the phone network are summarized in 
Table VI. 

- 



Number of epoches 

Fig. 9. The total error of the phone net as a function of the number of training epoches for the 
MAMO muterial. The fluctuations are caused by periodically changing the training 
muteriul between five different training partitions. One epoch in this fisure means one 
presentation of all the patterns in one partition only and the error is also related to one 
partition at a time. 

The fastest learning of the phone net was reached at a learning rate of 0.001 and a momen- 
tum term of 0.1. The weights were updated after each pattern. The training material was 
divided into the same five partitions used for the phone net in order to speed up the training 
time (still the training time was 100 hours CPU-time for the INTRED material and 250 hours 
for the MAMO material on an Apollo DN10000). As can be seen in Fig. 9, the total error has 
not reached a stable minimum value - the training process was interrupted due to running 
time limitations. On the other hand a low output error may be an indication of over-training, 
why it's hard to know from this figure only whether the training time was too short. The 
oscillations are caused by the subdivision of the training set, as noted above. The number of 
"full" epoches for the training set is one fifth of the values in the Figure. 
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Fig. 10. The base-line reference network. The compression layer and the feature window of the 
phone net have been removed. 

A base-line reference network was constructed in order to test the effect of the dual input 
window in the phone net. The input layer of the reference net is identical to the corresponding 
part of the phone network. The compression layer and the feature window have been 
removed, but the hidden layer is exactly the same as the "mixing layer" in the phone network. 
The output layer and the connections to it are also identical to the Swedish phone network. 
The topology of the net can be seen in Fig. 10. 
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Fig. 12. The structure of the segmentation network with 15 input nodes, 7 hidden nodes and 1 
output node. 

3.5 Phone activation filter 
It seems evident that the phoneme candidates for a segment should be selected among the 
candidates having the highest output activations. However, this will result in a lot of recogni- 
tion errors due to spurious, short activation peaks. According to our experience, smoothing 
the activations by using a simple mean value filter gives significantly better recognition per- 
formance. The filter parameters were calculated empirically to produce optimal recognition. 
The first, second, and third phoneme candidates for each recognized segment were selected 
according to the level of their smoothed activation peaks. These phonemes constitute the out- 
put of the complete acoustic-phonetic level processing. 



4. RESULTS 
The performance statistics reported below are based upon ten independent test sentences both 
for Swedish and Hungarian, compare Table VI. The speech material used for training was 
never used for testing the performance of the different networks. However, sometimes we 
give some results on the training set to indicate the generalization performance of the train- 
ing. 

4.1 Recognition of coarse phonetic features 
A typical output of the coarse feature network may be seen in Fig. 13, where the output acti- 
vations of the seven coarse features are plotted as a function of time. The segmentation and 
labelling was performed by a human phonetic expert. The straight horizontal lines indicate a 
0.5 activation level. We notice steep transitions for the voiceness, noiseness and nasalness 
features as well as parts of the vowelness feature. These features almost behave like binary 
signals. The (nonlinear) network has become sensitive to the gradual filter bank variations 
and is usually able to follow the discrete target values quite reliably. Some exceptions to this 
can be found in Fig. 13, where the phoneme "2" shows an uncertainty in the voiceness fea- 
ture, maybe due to strong frication, and in the phoneme "R", where the vowelness is some- 
what ambiguous, indicating its character of a semivowel. Most of the time the feature transi- 
tions are in good synchrony with the manually set boundaries. Features related to the place of 
articulation generally vary at a slower rate and these parameters frequently demonstrate 
intermediate values in spite of being binary during the training. The continuous distribution 
of these parameters agree with our original intentions, since the articulation features covered 
by these parameters have a continuous character, and we expected the net to learn this by 
being exposed to numerous different varieties of these features during the network training. 
Some slow transitions for these parameters can be seen in Fig. 13, e.g., in the "AN"-sequence 
on the right hand side. 

Table VII. Performance of the coarse phonetic feature network on the frame level when evaluating 
the feature activations as binary signals. 

The performance of the coarse feature network was tested by using three different meth- 
ods. In the most evident evaluation, a binary signal was formed by the output activations 
using a comparison level of 0.5 - if the signal exceeded this threshold the corresponding fea- 
ture was set to one and otherwise it was set to zero. These features were then compared to the 
features derived from the manual phoneme labels for each of the tested frames. This binary 
evaluation of the frame level recognition rate is summarized in Table VII. The network has a 
closely similar performance for both the INTRED- and the MAMO-material. Many features 
are correctly recognized for more than 90% of the frames and all features are recognized 

feature 

voiceness 
noiseness 
nasalness 
frontness 
centralness 
backness 
vowelness 
all features correct 

3 

percent correct feature recognition 
INTRED MAMO 

93.1 
9 1 .O 
95.4 
8 1.7 
83.2 
88.7 
88.2 
76.9 

93.3 
92.9 
93.1 
88.4 
80.8 
88.2 
88.0 
80.0 
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above an 80% level. The manner of articulation related features perform better than the place 
of articulation features. The last row gives the results when all the features of a frame are cor- 
rectly recognized. Most errors occur at phoneme transitions. The results show that in a sub- 
stantial majority of the frames, the selected discrete phoneme features are detectable by the 
neural network at the frame level. Testing on the training set results in a 78.8% score for 
frames having all features correct, which is just 2% higher than the results for the test set, 
indicating a good generalization for the coarse feature network. 

Fig. 13. Output activations ofthe coarse feature network as a function of time. Manually labelled 
segments. Horizontal lines indicate a 0.5 activation level for each feature. 
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Fig. 14. Distribution of the manner of articulation related coarse feature activation levels in 
relative frequencies for the MAMO-material. Evaluation based on (all) frames in the test 
set. RF% means relative frequency in percent. The legends: +voiceness, +noiseness, 
+nasalness and +vowelness denote frames trained with a 0.9 target value of the 
respective feature while complementary frames (e.g., -voiceness) used a 0,I target value 
of that feature. 
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40 

30 
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centralness activity 
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Fig. 15. Distribution of the place of articulation related coarse feature activations levels in rela- 
tive frequencies for the MAMO-material. Evaluation based on (all) frames in the test set. 
RF% means relative frequency in percent. The legends: +frontness, +centralness and 
+backness denote frames trained with a 0.9 target value of the respective feature while 
complementary frames (e.g., -backness) used a 0,I target value of that feature. 

The second evaluation of the coarse feature net concerns the distribution of the network 
output activations. Results for all of features in the MAMO-material may be seen in Figs. 14 
and 15. The target values for the output activations were set to 0.1 or 0.9, since this resulted 
in better convergence for the training. The diagrams show distribution statistics of comple- 
mentary features, i.e., +voiceness and -voiceness in relative frequencies, i.e., each bar shows 
the percentage of the frames having the indicated activation level in relation to the total num- 
ber of frames in the test material. This means that the sum of the bars are 100% when adding 
them for each feature and its complement. Fig. 14 shows that the distribution statistics of 
complementary features are well separated according to their target values during training. 
There is a very small overlap along the activation scale for the voiceness, noiseness and 
nasalness features, and the envelopes of the relative frequencies cross each other very close to 
a 0.5 activation level. This fact indicates that using a threshold of 0.5 when producing the 
above-mentioned results was correct. Another consequence of the polarized distribution is 
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that a nonlinear quantizer can describe the coarse features using only a 2 - 4 bit resolution. 
This fact is important when regarding hardware implementations of the net. The place of 
articulation parameters in Fig. 15 are not as well separated and this is especially true for the 
centralness feature. This is in accordance with their more continuous distribution. 

average activation I O frontness centralness backness I 

I I I J ( t , ! ~ I , , , I , I  

0 
I Y U: I: Y: E: A: A 0: E 0 A U A: 0: A A: 0 

front central back 

Fig. 16. Average output activations of the frontness, centralness and backness features based on 
the frames of the INTRED-test-material. All vowels have been trained with a 0.9 target 
value for either frontness, centralness or backness, while the target value for the other 
two place related features has been 0.1. 

The third assessment of the feature net is related to parametric evaluations of the articula- 
tion place related features. The average activation levels of the frontness, centralness and 
backness features for the most frequent vowels may be seen in Fig. 16 for Swedish and 
Fig. 17 for Hungarian. During the training process all vowels were assigned to one of the 
three classes: front, central, or back. Thus, the vowels in each of these groups have the same 
target features. In spite of these binary and non-distinctive target values, the output activa- 
tions of the feature net separate the vowels quite well using the continuous-valued place fea- 
tures. This indicates that on the basis of the thousands of phonemes used for training, the 
feature network develops a "sense" for the amount of frontness, centralness and backness in  
each vowel, which is expressed by the values of the scaled activations. The vowels have their 
maximum activation according to their targets during training, except the Swedish A-, A:- 
and 0:-vowels, that are classified as more central than front by the network. Both A-vowels 
are probably influenced by the spectrally very similar and about five times more frequent E- 
vowel, that is labelled as central. There are only minor differences in the first two formants. 
As for the 0:-vowel, it may have been affected by the similar short 0, that is more frequent 
and labelled as central. One could. of course, argue that these vowels should be labelled as 
central rather than front, considering their spectral appearance, and this would be an interest- 
ing thing to do. The front-back distinction is, however, taken from the articulatory domain. 
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Fig. 17. Average output activations of the frontness, centralness and backness features based on 
the frames of the MAMO material. All vowels have been trained with a 0.9 target value 
for either frontness, centralness or backness, while the target value for the other two 
place related features has been 0.1. 

average activation frontness * centralness A backness 

Fig. 18. The coarse features related to place of articulation compared to a standard phonetic 
description of the Swedish vowels (Table IV). 
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Fig. 19. The coarse features related to place of articulation compared to a standard phonetic 
description of the Hungarian vowels. 
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The relation between a classical phonetic representation of vowels and some coarse feature 
parameters is shown in Figs. 18 and 19 (Elert, 1989). The network representation of the 
vowels has a clear resemblance to the phonetic classification into the dimensions high/low 
and frontback. The agreement in the front/back-dimension is rather natural considering that 
most vowels have been assigned one of these features during training. The highflow-dimen- 
sion is, however, not explicitly used in the training. Still, it seems that the net modulates the 
vowelness feature to do almost the same distinctions. This feature is the only one common to 
vowels and no other sounds. Values used are all above 0.5, which means that the intended use 
of this parameter as a vowel label also is fulfilled. 

4.2 Phoneme classification on the frame level 
The phone network outputs an ordered list of phoneme candidates for each speech frame 
according to the level of their output activations - the best candidate has the highest activa- 
tion. It should be noted that this decision is based on a relatively wide window (150 ms). 
Each frame has a target label selected by a phonetic expert making it easy to compare the 
assigned target phoneme to the network candidates. After the training process, 54.2% of the 
frames in the INTRED-test-material and 54.7% of the frames in the MAMO-material were 
recognized correctly . Testing on the training set for the INTRED-material resulted in 58.6% 
recognition, indicating a relatively good generalization also for the phone net but also sug- 
gesting that the performance might be improved somewhat by continued training. It should be 
noted that all frames are included in these results - also transitional parts of the speech, where 
the acoustic character of the phonemes is changed due to coarticulation. The nature and the 
origin of the errors are treated in the next section. 

There is a close relation between the frequency of occurrence of each phoneme and its 
recognition rate. This is obviously a training effect and the relation is shown in Fig. 20, which 
is based on the MAMO-material. The correct classification rate always exceeds 50% if the 
phoneme is represented by more than 200 frames in the test material, or approximately 5% of 
all frames. Phonemes never recognized correctly are represented by less than 2% (80 frames) 
in this material and together they represent 15% of the frames. The same relations hold for 
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the training material as well, keeping in mind that it is five times larger. For the INTRED- 
material the corresponding values are: phones never recognized correctly all have less than 
1.5% of the frames and together they represent less than 10% of all frames, phones repre- 
sented by more than 4% of all frames have a recognition score of more than 50%. The lower 
values for Swedish are not surprising, since there are 9 phones less to discriminate between. 
These results may indicate that the training material should be chosen to have a more even 
phoneme distribution. This would certainly give a better performance for less frequent 
phonemes. However, it would be at the expense of an increased error rate for the more fre- 
quent phonemes, and we cannot be sure about the total effect. 

Fig. 20. Relation between the occurrence of frames in the test set and the recognition rate,for the 
Hungarian phonemes. 
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The training of the phone net was probably not completed when it was stopped due to time 
limitations. Some typical patterns can be seen in Fig. 21. The most frequent phoneme frames 
in the Hungarian material (E,A) have a very good recognition rate in the very beginning of 
the training process. However, not only the correct phonemes but almost all less frequent 
phonemes are classified as belonging to some of the most common ones in the beginning. As 
the net starts to differentiate among more phonemes, the performance for the most common 
phonemes goes down, while the net becomes more and more sensitive to the low frequency 
phonemes. Their recognition rate starts to increase at different later phases of the training 
procedure and the increase has a different speed for different phonemes. The net result is that 
the overall recognition rate is monotonously increasing during the training time, though the 
rate is rather small in the end. It would, of course, be interesting to continue the training pro- 
cess, but it is very time consuming on our current facilities. 
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Fig. 21. The evolution of the phoneme recognition perjiormance as a function of the training time 
for the Hungarian material. Each epoch means one presentation of all the training 
material. 

Phoneme substitutions are summarized by the confusion matrices in Figs. 22 and 23. The 
area of the black squares is proportional to the corresponding number of occurrences. The 
sum of the values in each row is normalized and the sum over each row is a completely filled 
square. All of the most frequent confusions are caused by acoustic similarities. 

In the confusion matrix for the Swedish INTRED-material in Fig. 22, the occlusion phase 
of the voiceless stops [P, T, K]  form a separated group as well as the burst phases [p, t, k]. 
The very frequent t-phone has a recognition score of 84% for the occlusion phase and 69% 
for the burst phase. The voiced stops show no clear grouping and are mixed with many other 
sounds but the nasals are clearly grouped together - the least frequent NG is substituted by 
the other two, M and N, which perform relatively well, with a 59% and 73% recognition 
score. The laterals R and L form another group and the voiced fricative J is mostly confused 
with the rather close vowel E. The voiceless fricatives, F and S, are recognized with 67% and 
83%, while the voiceless fricatives SJ and TJ have too few frames in the test material. 
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Response 
13 3 3 - - - - - - - - -  

. Q C Y ~ U Y ~ O O ~ Z Z ~ J ~ ~ L ~ V ) ~ I - W H ~ D ~ O ~ ~ - W H ~ O ~ O ~ ~  

Fig. 22. Phoneme  substitution.^ on the frame level based on the Swedish INTRED-material. The 
values are normalized for each row. The area of the black squares is proportional to the 
number of occurrences in each position.. 

Among the vowels we notice two groups containing the front vowels: I, E, A, and the back 
vowels: A and A. The long front vowels I:, E: and Y: are recognized as their much more fre- 
quent "relatives", 1 and E. Vowels with the best recognition rates are I-75%, E-61%, A-82% 
and A:-62%. By ignoring length differences in vowel recognition, e.g. not counting an E: 
recognized as E as an error, the overall recognition rate would improve by about 2%. 
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Fig. 23. Phoneme substitutions on the frame level based on the Hungarian MAMO-material. The 
values are normalized for each row. The area of the black squares is proportional to the 
number of occurrences in each position. 

In the Hungarian MAMO-material in Fig. 23 we notice that the occlusion phases of stops 
and affricates (P, T, K, C, TY, CS) were often confused. This is an effect of the labelling 
methodology, in which occlusions are labelled according to the phoneme they appear in. 
However, one could argue that they all should be labelled by the same symbol, since they 
only represent a silent interval. Still many of these occlusions were labelled correctly, since 
the context of each frame is included in the phone net input. Other typical confusions are the 
substitution of burst noise with fricative noise having a similar place of articulation (c-sz, cs- 
s, ty-s). These confusions are biased in the fricative direction, since there are more fricative 
noise frames in the training material making the network more sensitive to them. The long- 
short confusions (e.g. I:-I) are also based on acoustic similarities. An interesting case is the U- 
M substitution. It shows how acoustically similar the almost closed vowel and the orally 
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completely closed, nasalized sonorant are. The most frequent confusions have a good chance 
to be corrected during a following language level processing, since they may be phonetically 
predicted. 

4.3 Phoneme level classification using expert segmentation 
This evaluation is based on the smoothed output activations of the phone network. An exam- 
ple of this is presented in Fig. 24. After observing all test material using this representation, 
the following significant conclusions could be drawn: 

- The peak of the phone with the maximum activation has an average value of 0.47 inside 
the phoneme borders. The second and third largest peeks have a value of 0.27 and 0.20, 
respectively. Thus, the first candidate regularly has a considerably higher value than the 
others. 

- The activation levels of adjacent phonemes cross each other close to the phoneme bor- 
ders. This fact forms the basis for our automatic segmentation network. 

- The phone candidates proposed by the net and the manual labels are the same in the 
most cases. The recognition rate values are summarized in Table VIII, in which each 
epoch includes one presentation of each pattern in the full training set. 

target labels 

Z 
Y 1. 

> 4 

Y 

v 
0 

Ya Y 

a 
u 0. 
0, 

I, 
0 
0 
E 
'47 

0. 

0. 

C. 

4 . 8  5.0 5 .2  

Fig. 24. An example of the smoothedphone net output activations. 
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Fig. 26. The output activation of the segmentation network as a function of time. The vertical 
lines mark the expert segmentation. The straight horizontal lines indicate the threshold 
level. 

4.4 Recognition of phoneme borders 
The single output of the segmentation network is trained to have a high value in the first 
frame of each phoneme, see Fig. 26. The system detects a phoneme segment when the acti- 
vation has a peak above the decision threshold. Increasing this threshold decreases the num- 
ber of detected segments and vice versa. The optimum value can only be determined in coop- 
eration with a language level processing. In our evaluation, a medium level threshold was 
chosen, where the number of errors did not vary very much when perturbing the threshold 
value. For the INTRED-material a threshold of 0.2 was used and the value for the MAMO- 
material was 0.16. The results are summarized in Table IX. 
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Table IX.  Performunce of the segmentation network. 

4.5 Phoneme recognition using automatic segmentation 
The phoneme recognition process is based on the peaks of the smoothed phone net output 
activations within the segments detected by the segmentation net. The first three candidates 
were compared to the target phoneme in the evaluation. To reduce some of the problems due 
to lost and extra phoneme borders, phonemes in automatic segments placed plus or minus one 
(expert) segment from the correct target phoneme segment were allowed when comparing to 
the target phoneme. It is conjectured that these errors should not degrade an upper level 
recognition performance too much. Moreover target segments were compared to phoneme 
candidates in multiple segments that overlapped them in time. Frequently these inserted seg- 
ments were correctly labelled, which would reduce the degradation in recognition perfor- 
mance caused by them. Having these evaluation criteria in mind, we note that we get about 
the same level of performance as when using manual expert segmentation, see Table X 
below. 

TubIe X .  Results for phoneme recognition when using automatic segmentation. 

4.6 Experiments with the base-line reference phone network 
The base-line phone network was trained by the same training data and the same number of 
epoches as the standard phone net for the INTRED-material. The number of connections is 
considerably less compared to the standard phone network. Since we have less free parame- 
ters, this should mean that the training level is higher compared to the standard network. The 
risk for over-training is small considering the large variation in the training data and we did 
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Correct first. 
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MAMO '6 
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64.5 

72.0 
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not observe any effect like that. In this test, only the spectral data of each speech frame was 
used as input to the phone net. The results are summarized in Table XI. The results on the 
frame level are included for comparison. They are based on a frame-by-frame comparison of 
the phone net outputs to the target labels and include no segmentation at all. The table shows 
that the recognition scores are considerably lower for the base-line net when compared to the 
standard net, indicating that the coarse feature part of the dual window plays an important 
role in the recognition process. 

Table X I .  Phoneme recognition on fi-ame and segment level using the base-line phone network and 
the original phone network using the INTRED-material. 

4.7 Speaker and language dependency of the system 
Speaker and language independence of the coarse feature set was a main objective when 
planning the system structure. We only have had the possibility to test these characteristics 
for a limited number of speech materials. The results are summarized in Fig. 27. For the 
INTRED - JONSSON cross-speaker test the language was the same but both the speaker and 
the text were changed. In the INTRED - MAMO and MAMO - INTRED cross-language tests 
both the language and the speaker were changed. According to the figure, the recognition rate 
of the coarse features has changed only a little compared to the standard test results, which 
shows that these features indeed are quite robust. 
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Coarse feature 
recognition O/O 

voice- noise- nasal- front- central- back- vowel- all 
ness ness ness ness ness ness ness features 

correct 

trained by trained by a trained by trained by trained by 
INTRED MAMO INTRED INTRED MAMO 
tested by tested by tested by tested by tested by 
INTRED MAMO JONSSON MAMO INTRED 

Fig. 27. Cross-speaker and cross-language recognition results of the coarse features. 

The phoneme level results of the cross-tests are shown in Table XII. It is evident that the 
complete system is highly adapted to the training speaker, which substantially reduces the 
performance for other speakers. This is not very surprising considering how much the acous- 
tic speech signal varies between speakers. 

The Swedish and the Hungarian phoneme sets are considerably different why cross-lan- 
guage tests at the phoneme level would have no meaning. 
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TubleXII. Recognition of phonemes using another speaker on frame and segment level. Thc 
networks were trained by  the INTRED-material and tested by the JONSSON-materiul. 

5. SOME CHARACTERISTIC PHONEME RECOGNITION ERRORS 
An analysis of the phoneme recognition errors has shown that in most cases there are several 
reasons for the confusions. The classification only allows phoneme candidates to be either 
correct or false, but a more realistic modelling would introduce probabilities associated with 
the labels. The recognition errors have been classified into some different categories below. 
The categories are not independent of each other. 

Frame level 
recognition 
Expert 

segment 

borders 

Automatic 

segment 

borders 

5.1 Recognition system specific errors 
Low-frequency phonemes are represented by fewer samples in the training material and this 
will in turn lead to a less effective training of their representations in the phone network. 
Substitutions and deletions caused by this effect are referred to as training-specific errors. 
Updating the weights after each pattern was supposed to counter-effect this somewhat, but the 
most frequent phonemes still have a large influence on the weights. The sensitivity of the 
network to the less frequent phonemes does not increase until the more frequent ones are rec- 
ognized with small output errors. One third of the phoneme recognition errors in the MAMO- 
material is in this class of training-specific errors. In evaluations based on the human segmen- 
tation, these errors appear as substitutions, but when using automatic segmentation, they are 
counted as deleted phonemes. The sensitivity of the phone network will be low and the seg- 
mentation network will not be able to find the segment borders for low frequency phonemes. 

Another typical system-specific error category is the deletion of the burst phases in stops. 
The coarse feature network generally has strong peaks in these cases (compare the noiseness 
feature in Fig. 13). However, at the output of the phone network, the peaks are reduced, since 
the bursts are short (usually only one single frame), and the smoothing filter will push them 
below the activity of the surrounding phonemes. 
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5.2 Errors related to the speech material 
Reduced articulation is an integral part of human speech. The last part of a word is often not 
clearly articulated. Frequently phonemes are not completely deleted but there are still some 
indications of their identity by various acoustic phenomena. The acoustic manifestation 
occurs only as modulations of neighbouring sounds. This is an apparent problem also when 
doing manual labelling of speech. 

Another interesting phenomenon is the overlapping articulation of two sounds, where the 
phonetic elements are hard to separate. The smoothed output activations of the phone network 
are, however, capable of displaying these conflicting evidence, as may be seen in Figs. 28 and 
29. In the MAMO-material (with text "..hGssal rakta.."), an overlapping articulation of the L- 
and R-phonemes occurred. The phonetician did not insert any separate label for the L-sound, 
but the phone network gave a very specific response: the L- and R-outputs have simultaneous 
but weak peaks. The stronger activations of their neighbours mask the simultaneous L-R 
peeks, but it is intriguing to see this embryo of recognition. 

t orget lobels 

22.8 23.0 23.2 23.4 t i m e  (s) 

Fig. 28. Example of smoothed activations in the case of reduced and overlapping articulation, 
MAMO-material. 

In the MAMO-material, 70% of the affricates are classified as stop-fricative-combinations 
having the same place of articulation as the target affricate. In the evaluation they were 
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counted as substitution errors. The question whether to perceive them as one compound sound 
or a combination of two sounds, is still discussed among Hungarian phoneticians. 

The results discussed in the previous section and the error examples in this section show 
that the whole system has a good phone labelling capability. It has also demonstrated a 
capability to represent ambiguous and overlapping events by parallel output activations. 

torget lobels 
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Y 1. .-I 

> .-I 
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8 
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-0 0. 
01 

I, 
8 
E 

0. 

0. 

0. 

2.6  2.8 3.0 3.2 time ( 5 )  

Fig. 29. Example of smoothed phone activations in the cases of unvoiced "G" and "D" and in the 
case of a reduced "EM (Swedish). 

A short speech sample from the INTRED-material in Fig. 29 shows several errors related 
to the speech material. In the text "skogsdungen", the G-K and D-T substitutions are regarded 
as errors by the evaluation program. A traditional spectrogram representation of the speech 
signal shows that these voiced stops are realized by unvoiced segments, which is natural con- 
sidering coarticulation effects. However, the phonemic labelling scheme used for this material 
is the real origin of these errors and the network interpretation is quite natural in this case. 
These problems may be resolved by introducing higher level linguistic components or having 
enough training samples for a context sensitive net to learn that voiced stops become voice- 
less in certain surroundings. Returning to reduced articulations, the "E"-phoneme in 
"skogsdungen" is a typical example of this. Its smoothed activity has a peak value of 0.36 
only, but still the phoneme is clearly there. However, it is only the second candidate since the 
activations of strong surrounding nasals are masking it (the E-vowel is naturally heavily 
nasalized). 
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6. CONCLUSIONS 
A phone-labelling system for continuous speech has been constructed and evaluated. Besides 
using an earlier established Swedish database a Hungarian speech data-base has been assem- 
bled for training and testing the system. 

The coarse features have been shown to be quite robust, when changing speaker and lan- 
guage. It would also be interesting to test a feature set where the place of articulation features 
were replaced by some features related more to the spectral characteristics of sounds (i.e., 
compact, diffuse and flat, compare Fant, 1973). The results in Fig. 16 where some Swedish 
front vowels were regarded as central by the net is an indication of this. 

The output activations of the network have an inherent ability to indicate parallel and 
overlapping speech events. They also have been shown to develop continuous values in spite 
of binary targets to discriminate between phones with similar target features, and in at least 
one case these output values have a meaningful phonetic interpretation, as can be seen in the 
vowel plots of Figs. 18 and 19. 

The lexical search in the language level processing should be based on the most probable 
phoneme candidates. Since the activation values of the current system are closely related to 
the probability of correct labelling (compare Fig. 25), our system is able to provide this addi- 
tional information. The further lexical processing resembles steps undertaken when trying to 
solve crossword puzzles. In different studies it has been shown that even rather a crude pho- 
netic description of a word will drastically reduce the number of possible word candidates 
also for vocabularies having thousands of words (Carlson, Elenius, Granstrom and Hunnicutt, 
1986; Huttenlocker & Zue, 1983). 

Many ideas regarding how to increase the system performance appeared during the eval- 
uation of the system. The system is quite complex and has thousands of free parameters. Due 
to limited time only a few parameter variations were tested. Below, some ideas are listed con- 
cerning parameters that either could improve the recognition rate or speed up the training 
process: 

- the number of nodes in the hidden layers of the networks (coarse, phone, segmentation) 
- the training parameters of networks (momentum term, learning rate) 
- the selection of the training data (perhaps by representing rare phonemes more fre- 

quently than in natural speech and by omitting ambiguous elements) 
- optimizing the smoothing filter parameters 
- optimizing the feature window length 
- optimizing the segmentation window length 
- managing stops as single events in the phone classification. 
The size of the speech material used is a limitation, that we have some difficulties in esti- 

mating the effect of. Compared to the practically unlimited variations possible in a language, 
the representation of speech by 50 sentences, or 2800 phonemes, or 21000 frames, is very 
fragmentary, but compared to similar systems reported in other papers the size of the speech 
material is similar to many of them. 

There have been some speculations about the necessary acoustic-phonetic recognition 
accuracy in continuous speech recognition. It is a well known fact in telecommunication 
(Flatcher, 1953) that an 80% logatom intelligibility in a transmission system means practi- 
cally error-free communication (99 % sentence intelligibility). According to Klatt (in Lea, 
1980) some researchers argue that 60-70% accuracy is what we could expect from machines, 
while Klatt rather thinks that 90% is the needed performance target. 

It is difficult to compare this system to other recently published systems. There are only a 
few results reported for complete phoneme sets, and the working principles, the speech mate- 
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rials used, and the evaluation methods are different. The speaker independent recognizer of 
AT&T has been reported to have a 52% phoneme recognition rate (Levinson, Liberman, 
Ljolje & Miller, 1989). Systems based on the Kohonen feature map report a 75-90 % recog- 
nition rate depending on the speaker (Kohonen, Torkkola, Shozakai, Kangas & Viint28, 
1987). Many systems reporting recognition rates above 9 0  % process a subset of phonemes 
only o r  use presegmented phoneme samples. Considering that the above systems probably 
have been more elaborately tuned, we consider our efforts quite promising. 

Future work includes evaluation of different input parameters, varying the sizes of input 
windows, speeding up the training and introduction of a lexical component. It would also be 
interesting to test recurrent nodes and to do comparisons with self-organizing nets like those 
proposed by Kohonen, using the same speech material. 
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